178 research outputs found

    New findings on the prototypical Of?p stars

    Full text link
    In recent years several in-depth investigations of the three Galactic Of?p stars were undertaken. These multiwavelength studies revealed the peculiar properties of these objects (in the X-rays as well as in the optical): magnetic fields, periodic line profile variations, recurrent photometric changes. However, many questions remain unsolved. To clarify some of the properties of the Of?p stars, we have continued their monitoring. A new XMM observation and two new optical datasets were obtained. Additional information for the prototypical Of?p trio has been found. HD108 has now reached its quiescent, minimum-emission state, for the first time in 50--60yrs. The echelle spectra of HD148937 confirm the presence of the 7d variations in the Balmer lines and reveal similar periodic variations (though of lower amplitudes) in the HeI5876 and HeII4686 lines, underlining its similarities with the other two prototypical Of?p stars. The new XMM observation of HD191612 was taken at the same phase in the line modulation cycle but at a different orbital phase as previous data. It clearly shows that the X-ray emission of HD191612 is modulated by the 538d period and not the orbital period of 1542d - it is thus not of colliding-wind origin and the phenomenon responsible for the optical changes appears also at work in the high-energy domain. There are however problems: our MHD simulations of the wind magnetic confinement predict both a harder X-ray flux of a much larger strength than what is observed (the modeled DEM peaks at 30-40MK, whereas the observed one peaks at 2MK) and narrow lines (hot gas moving with velocities of 100--200km/s, whereras the observed FWHM is ~2000km/s).Comment: 10 pages, 8 figures (2 in jpg), accepted for publication by A&

    Hot stars observed by XMM-Newton I. The catalog and the properties of OB stars

    Full text link
    Aims : Following the advent of increasingly sensitive X-ray observatories, deep observations of early-type stars became possible. However, the results for only a few objects or clusters have until now been reported and there has been no large survey comparable to that based upon the ROSAT All-Sky Survey (RASS). Methods : A limited survey of X-ray sources, consisting of all public XMM observations (2XMMi) and slew survey data (XMMSL1), is now available. The X-ray counterparts to hot, massive stars have been searched for in these catalogs. Results : About 300 OB stars were detected with XMM. Half of them were bright enough for a spectral analysis to be possible, and we make available the detailed spectral properties that were derived. The X-ray spectra of O stars are represented well by low (<1keV) temperature components and seem to indicate that an absorption column is present in addition to the interstellar contribution. The X-ray fluxes are well correlated with the bolometric fluxes, with a scatter comparable to that of the RASS studies and thus larger than found previously with XMM for some individual clusters. These results contrast with those of B stars that exhibit a large scatter in the L_X-L_BOL relation, no additional absorption being found, and the fits indicate a plasma at higher temperatures. Variability (either within one exposure or between multiple exposures) was also investigated whenever possible: short-term variations are far more rare than long-term ones (the former affects a few percent of the sample, while the latter concerns between one third and two thirds of the sources). Conclusions : This paper presents the results of the first high-sensitivity investigation of the overall high-energy properties of a sizable sample of hot stars.Comment: 10 pages, 4 figures, accepted for publication by A&

    Massive non-thermal radio emitters: new data and their modelling

    Full text link
    During recent years some non-thermal radio emitting OB stars have been discovered to be binary, or multiple systems. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated up to high energies. The electron acceleration occurs at the strong shocks created by the collision of radiatively-driven winds. Here we summarize the available radio data and more recent observations for the binary Cyg OB2 No. 9. We also show a new emission model which is being developed to compare the theoretical total radio flux and the spectral index with the observed radio light curves. This comparison will be useful in order to solve fundamental questions, such as the determination of the stellar mass loss rates, which are perturbed by clumping.Comment: 3 pages, 1 figure, poster at Four Decades of Research on Massive Stars-A Scientific Meeting in Honour of Anthony F.J.Moffa

    WR bubbles and HeII emission

    Full text link
    We present the very first high quality images of the HeII 4686 emission in three high excitation nebulae of the Magellanic Clouds. A fourth high excitation nebula, situated around the WR star BAT99-2, was analysed in a previous letter. Using VLT FORS data, we investigate the morphology of the ring nebulae around the early-type WN stars BAT99-49 & AB7. We derive the total HeII fluxes for each object and compare them with the most recent theoretical WR models. Using Halpha, [OIII] and HeI 5876 images along with long-slit spectroscopy, we investigate the physical properties of these ring nebulae and find only moderate chemical enrichment. We also surveyed seven other LMC WR stars but we failed to detect any HeII emission but note that the nebula around BAT99-11 shows a N/O ratio and an oxygen abundance slightly lower than the LMC values, while the nebula around BAT99-134 presents moderate chemical enrichment similar to the one seen near BAT99-2, 49 and AB7. The third high excitation nebula presented in this paper, N44C, does not harbor stars hotter than mid-O main sequence stars. It was suggested to be a fossil X-ray nebula ionized but our observations of N44C reveal no substantial changes in the excitation compared to previous results reported in the literature.Comment: 13 pages, 8 figures (7 in jpg), accepted by A&A, also available from http://vela.astro.ulg.ac.be/Preprints/P81/index.htm

    The first X-ray survey of Galactic Luminous Blue Variables

    Full text link
    Aims: The X-ray emission of massive stars has been studied when these objects are in their main-sequence phase, as well as in their Wolf-Rayet phase. However, the X-ray properties of the transitional Luminous Blue Variable (LBV) phase remain unknown. Methods: Using a dedicated but limited XMM survey as well as archival XMM and Chandra observations, we performed the first X-ray survey of LBVs: about half of the known LBVs or candidate LBVs are studied. Results: Apart from the well known X-ray sources eta Car and Cyg OB2 #12, four additional LBVs are detected in this survey, though some doubt remains on the association with the X-ray source for two of these. For the other LBVs, upper limits on the flux were derived, down to log[LX/LBOL]9.4\log[L_{\rm X}/L_{\rm BOL}]-9.4 for PCyg. This variety in the strength of the X-ray emission is discussed, with particular emphasis on the potential influence of binarity.Comment: 13 pages, 2 figures, accepted by A&

    The spectral variability and magnetic field characteristics of the Of?p star HD 148937

    Full text link
    We report magnetic and spectroscopic observations and modeling of the Of?p star HD 148937 within the context of the MiMeS LP at the CFHT. Thirty-two high signal-to-noise ratio circularly polarised (Stokes V) spectra and 13 unpolarised (Stokes I) spectra of HD 148937 were acquired in 2009 and 2010. A definite detection of a Stokes V Zeeman signature is obtained in the grand mean of all observations (in both LSD mean profiles and individual spectral lines). The longitudinal magnetic field inferred from the Stokes V LSD profiles is consistently negative, in contrast to the essentially zero field strength measured from the diagnostic null profiles. A period search of equivalent width measurements confirms the previously-reported 7.03 d variability period. The variation of equivalent widths is not strictly periodic: we present evidence for evolution of the amount or distribution of circumstellar plasma. Interpreting the 7.03 d period as the stellar rotational period within the context of the ORM, we have phased the equivalent widths and longitudinal field measurements. The longitudinal field measurements show a weak sinusoidal variation of constant sign, with extrema out of phase with the H{\alpha} variation by about 0.25 cycles. The inferred magnetic configuration confirms the suggestion of Naz\'e et al (2010), who proposed that the weaker variability of HD 148937 as compared to other members of this class is a consequence of the stellar geometry. Based on the derived magnetic properties and published wind characteristics, we find a wind magnetic confinement parameter \eta\ast \simeq 20 and rotation parameter W = 0.12, supporting a picture in which the Halpha emission and other line variability have their origin in an oblique, rigidly rotating magnetospheric structure resulting from a magnetically channeled wind. (Abridged.)Comment: 13 pages, MNRAS. Version 2, small change to Fig. 1

    Search for non-thermal X-ray emission in the colliding wind binary Cygnus OB2 #8A⋆

    Get PDF
    Aims. Cyg OB2 #8A is a massive O-type binary displaying strong non-thermal radio emission. Owing to the compactness of this binary, emission of non-thermal X-ray photons via inverse Compton scattering is expected. Methods. We first revised the orbital solution for Cyg OB2 #8A using new optical spectra. We then reduced and analysed X-ray spectra obtained with XMM-Newton, Swift, INTEGRAL, and NuSTAR. Results. The analysis of the XMM-Newton and Swift data allows us to better characterise the X-ray emission from the stellar winds and colliding winds region at energies below 10 keV. We confirm the variation of the broad-band light curve of Cyg OB2 #8A along the orbit with, for the first time, the observation of the maximum emission around phase 0.8. The minimum ratio of the X-ray to bolometric flux of Cyg OB2 #8A remains well above the level expected for single O-type stars, indicating that the colliding wind region is not disrupted during the periastron passage. The analysis of the full set of publicly available INTEGRAL observations allows us to refine the upper limit on the non-thermal X-ray flux of the Cyg OB2 region between 20 and 200 keV. Two NuSTAR observations (phases 0.028 and 0.085) allow us to study the Cyg OB2 #8A spectrum up to 30 keV. These data do not provide evidence of the presence of non-thermal X-rays, but bring more stringent constraints on the flux of a putative non-thermal component. Finally, we computed, thanks to a new dedicated model, the anisotropic inverse Compton emission generated in the wind shock region. The theoretical non-thermal emission appears to be compatible with observational limits and the kinetic luminosity computed from these models is in good agreement with the unabsorbed flux observed below 10 keV

    A Changing Wind Collision

    Get PDF
    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ~2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions

    The massive binary HD 152218 revisited: A new colliding wind system in NGC 6231

    Full text link
    We present the results of an optical and X-ray monitoring campaign on the short-period massive SB2 binary HD 152218. Combining our HiRes spectroscopic data with previous observations, we unveil the contradictions between the published orbital solutions. In particular, we solve the aliasing on the period and derive a value close to 5.604 d. Our eccentricity e = 0.259 +/- 0.006 is slightly lower than previously admitted. We show that HD 152218 is probably undergoing a relatively rapid apsidal motion of about 3deg/yr and we confirm the O9IV + O9.7V classification. We derive minimal masses of 15.82 +/- 0.26 Msol operator and 12.00 +/- 0.19 Msol operator and constrain the radius of the components to R1 = 10.3 +/- 1.3 Rsol and R2 = 7.8 +/- 1.7 Rsol. We also report the results of an XMM-Newton monitoring of the HD 152218 X-ray emission throughout its orbital motion. The averaged X-ray spectrum is relatively soft and it is well reproduced by a 2-T optically thin thermal plasma model with component temperatures about 0.3 and 0.7 keV. The system presents an increase of its X-ray flux by about 30% near apastron compared to periastron, which is interpreted as the signature of an ongoing wind-wind interaction process occurring within the wind acceleration region.Comment: published by New Astronomy, 13, 20

    NGC 1624-2: A slowly rotating, X-ray luminous Of?cp star with an extraordinarily strong magnetic field

    Get PDF
    This paper presents a first observational investigation of the faint Of?cp star NGC 1624-2, yielding important new constraints on its spectral and physical characteristics, rotation, magnetic field strength, X-ray emission and magnetospheric properties. Modeling the spectrum and spectral energy distribution, we conclude that NGC 1624-2 is a main sequence star of mass M {\simeq} 30 M{\odot}, and infer an effective temperature of 35 {\pm} 2 kK and log g = 4.0 {\pm} 0.2. Based on an extensive time series of optical spectral observations we report significant variability of a large number of spectral lines, and infer a unique period of 157.99 {\pm} 0.94 d which we interpret as the rotational period of the star. We report the detection of a very strong - 5.35 {\pm} 0.5 kG - longitudinal magnetic field , coupled with probable Zeeman splitting of Stokes I profiles of metal lines confirming a surface field modulus of 14 {\pm} 1 kG, consistent with a surface dipole of polar strength >~ 20 kG. This is the largest magnetic field ever detected in an O-type star, and the first report of Zeeman splitting of Stokes I profiles in such an object. We also report the detection of reversed Stokes V profiles associated with weak, high-excitation emission lines of O iii, which we propose may form in the close magnetosphere of the star. We analyze archival Chandra ACIS-I X-ray data, inferring a very hard spectrum with an X-ray efficiency log Lx/Lbol = -6.4, a factor of 4 larger than the canonical value for O-type stars and comparable to that of the young magnetic O-type star {\theta}1 Ori C and other Of?p stars. Finally, we examine the probable magnetospheric properties of the star, reporting in particular very strong magnetic confinement of the stellar wind, with {\eta}* {\simeq} 1.5 {\times} 10^4, and a very large Alfven radius, RAlf = 11.4 R*.Comment: 17 pages, MNRAS accepted and in pres
    corecore